

# Quantifying Latent Fingerprint Quality

Team: Jordan Varney, Sarah Scheffler (Fall PM), Christopher Eriksen, Martin Loncaric (Spring PM),

- Adviser: Yi-Chieh (Jessica) Wu
- Liaison: Nicholas Orlans and Sarah Doyle

#### **Harvey Mudd Clinic**



# **Project Goal**

Develop and implement a mathematical model for latent fingerprint quality with regard to AFIS matching and assess the performance of various quality features.

# **Fingerprint Overview**

#### **Exemplar Prints**



Taken on purposeComprise databases

www.vetmed.vt.edu, wilenet.org

#### Latent Prints



- Crime scene prints
  - Incomplete
  - Background noise
  - Unknown orientation

# **Automated Fingerprint Identification System**



#### Minutiae



6

www.anilaggrawal.com

# Latent Suitability for AFIS Identification

"Good"

#### "Bad"





NIST Special Database 27A

# **Project Goal**

Develop and implement a mathematical model for latent fingerprint quality with regard to AFIS matching and assess the performance of various quality features.



# **Quality Scores**

#### Problem:

- Some latents are not suitable for AFIS identification
- Too many prints, not enough AFIS time



NIST Special Database 27A

# **Quality Scores**

#### Problem:

- Some latents are not suitable for AFIS identification
- Too many prints, not enough AFIS time



#### NIST Special Database 27A

#### Solution:

- Model latent fingerprint image quality
- Only use AFIS for good quality latents

>





( 10 )

# **Project Goals**

- Assess latents' suitability for identification with AFIS
- Analysis of existing fingerprint quality metrics
- Mathematical model for latent fingerprint quality
- Implementation of quality score





[ 12 ]





NIST Special Database 27A

#### **Minutia Detection**

Image (w,h) 516 485

60 Minutiae Detected

| 0  | : | 209, | 117 | : | 13 | : | 0.058 | :RIG |
|----|---|------|-----|---|----|---|-------|------|
| 1  | : | 212, | 164 | : | 14 | : | 0.057 | :RIG |
| 2  | : | 216, | 188 | : | 14 | : | 0.122 | :RIG |
| 3  | : | 218, | 120 | : | 13 | : | 0.124 | :RIG |
| 4  | : | 224, | 151 | : | 30 | : | 0.123 | :RIG |
| 5  | : | 224, | 203 | : | 27 | : | 0.061 | :BIF |
| 6  | : | 225, | 159 | : | 11 | : | 0.123 | :BIF |
| 7  | : | 240, | 104 | : | 0  | : | 0.058 | :BIF |
| 8  | : | 245, | 156 | : | 5  | : | 0.125 | :RIG |
| 9  | : | 246, | 193 | : | 9  | : | 0.124 | :BIF |
| 10 | : | 248, | 164 | : | 9  | : | 0.128 | :BIF |
| 11 | : | 248, | 200 | : | 25 | : | 0.058 | :BIF |
| 12 | : | 251, | 134 | : | 2  | : | 0.124 | :RIG |
| 13 | : | 255, | 147 | : | 3  | : | 0.122 | :BIF |
| 14 | : | 260. | 126 | : | 5  | : | 0.126 | :RIG |
|    |   |      |     |   |    |   |       |      |

NIST Special Database 27A NBIS MINDTCT http://www.griaulebiometrics.com/



15 )

## **Good and Bad Minutia Counts**



NIST Special Database 27A

16 ]

# **Gabor Minutia Score**

Recreate a minutia using basis functions

Learn mapping of coefficients to quality



# **Frequency Domain Quality Index**



High-quality prints have narrow peaks in the frequency domain

18

Chen, Yi et. al. 2005.

# **Direction Field**

Measure ridge continuity



19

Zaeri, Naser. 2011.

### **Predicting Quality from Features**



# **Predicting Quality from Features**



- Quality: The chance that the correct match (assuming it exists) will appear in the top 20 ranked AFIS results
- Response: Our approximation of quality, derived from AFIS results

$$q = \int_0^\infty Q(s) R(s) ds$$

Q(s): probability that correct match will have similarity score *s* 

R(s): probability that an incorrect match will have similarity score less than s





R(s): probability that an incorrect match will have similarity score less than s

$$q = \int_0^\infty Q(s) R(s) ds$$



Q(s): probability that correct match will have similarity score s

# **Models: Clustering/Interpolation**



# **Models: Regression**





Feature 1

High quality

High quality

Low

quality

Linear Regression

 $y = a_0 + a_1 x_1 + a_2 x_2 + \dots a_n x_n$ 





Linear Regression

 $y = a_0 + a_1 x_1 + a_2 x_2 + \dots a_n x_n$ 



Capped Linear Regression  $y = \max(b, a_0 + a_1x_1 + a_2x_2 + \dots a_nx_n)$ 

Linear Regression

 $y = a_0 + a_1 x_1 + a_2 x_2 + \dots a_n x_n$ 



Capped Linear Regression  $y = \max(b, a_0 + a_1x_1 + a_2x_2 + \dots a_nx_n)$ 



Linear Regression

 $y = a_0 + a_1 x_1 + a_2 x_2 + \dots a_n x_n$ 



Capped Linear Regression  $y = \max(b, a_0 + a_1x_1 + a_2x_2 + \dots a_nx_n)$ 



Average Response



Average Response







# Log Likelihood

Our best statistic for judging a model:

$$\log \text{ likelihood} = \sum_{\text{testing}} \ln(q_o q_p + (1 - q_0)(1 - q_p))$$

- The probability of observing testing data, assuming our model is correct
- Incorporates both how powerful the model is and how consistent its claims are
- The higher, the better

#### **Model Performance**



#### **Feature Performance**





### Limitations

- Only one data set of ~5000 latent prints and 120 exemplar prints used
- Data set prints only from 6 individuals
- Only one AFIS



- Calculate quality of a print using a trained model
- Determined a model which effectively incorporates data from multiple features
- Reject at least 36% of latent prints with over 99% confidence



42 ]

#### **Model Predictions versus Response Variable**















