
On Resilient Password-Based Key Derivation Functions
Jason Hennessey

Sarah Scheffler

Mayank Varia

ABSTRACT
Password-based key derivation functions (PBKDFs) create keys that

are used to protect a great wealth of private information. In the

modern world where we bring our devices everywhere, there are

ample opportunities for criminals or governments to use hardware

dedicated to the task of brute-force “cracking” PBKDFs in order to

enter these devices.

Existing PBKDFs require substantial computing power or mem-

ory with the goal of running slowly in order to raise the cost of

brute-forcing. However, with the increased availability of special-

ized hardware, attackers can often brute-force crack passwords in

a matter of seconds to hours. This method of slowing the computa-

tion is no longer viable when the attacker has hardware that can

compute the PBKDF orders of magnitude faster than the defender.

Even though they are designed by both the systems and cryp-

tography communities, the actual requirements of a PBKDF re-

main muddled somewhere in between. In this paper, we provide

a definition of resilient PBKDFs. This definition combines (1) the

cryptographic requirement that low-entropy passwords can pro-

duce keys that can only be broken via brute force search with (2)

the systems requirement the components collectively permit an

attacker to perform at best a linear speedup over the defender’s

execution, no matter the attacker platform.

Additionally, we construct a resilient PBKDF called Bog that

meets our definition. Bog achieves resilience by iterating the hash

combiner of Fischlin, Lehmann, and Pietrzak with a pluggable ar-

chitecture for plugins that consume resources of different types.

Bog ties these primitives together via a sponge function design

introduced by Bertoni et al. Bog was developed while keeping both
cryptographic techniques and systems security principles in mind.

We provide a proof of security of Bog in the Random Oracle Model,

as well as a proof-of-concept implementation.

1 INTRODUCTION
Laptops and smartphones today hold an extraordinary amount of

sensitive, personal details about all aspects of people’s lives. Full

disk encryption (FDE) is our best defensive mechanism today to

protect the confidentiality of this data when devices are stolen by

thieves or temporarily confiscated by governments, especially when

crossing the border between countries. Since FDE must withstand

an attacker who possesses and can introspect the device, it follows

that the decryption key cannot be stored on the device itself. In-

stead, the (perhaps multi-factor) authentication of a user must be

cryptographically bound to the user’s authorization to decrypt the

data on the device.

Password-based key derivation functions (PBKDFs) provide this

binding. PBKDFs use input factors like passwords, physical tokens,

and biometrics (along with public data like a salt and the key length)

to generate the output key required to decrypt the disk. Because

AM
D

58
70

x6

An
tM

in
er

 S
4

An
tM

in
er

 S
5+

An
tM

in
er

 S
9

Eb
it

E1
0

Miners

1 second

1 hour
1 day

1 year
20 years

Ti
m

e
to

 b
ru

te
-fo

rc
e

pa
ss

wo
rd password is a dictionary word

password is 10 random letters

2009 2010 2014 2015 2016 2017 2018
Year

Time to brute force password sequentially
for 10,000 iterations of PBKDF2

Figure 1: Time to brute-force PBKDF2 with 10,000 iterations
for a password space of a single dictionary word (red) or
10 random letters (blue). Estimates for cracking hash rates
were approximated with the Bitcoin hashing rate of miners
on CPUs, GPUs, and commercially available ASICs [1, 19,
20]. Due to Bitcoin’s use of SHA2-256, it is expected that a
PBKDF2 iteration is roughly equivalent to a single hash.

passwords are notoriously low-entropy, password-based systems

are particularly vulnerable to brute-force attack.

PBKDFs today. Modern PBKDFs expend computing resources to

produce the key slowly, in an attempt to thwart brute-force attacks

[64]. A slowdown is beneficial because the honest user only pays

this cost once whereas a brute-force attacker must pay this cost for

every password attempt. The NIST-standardized algorithm PBKDF2

[64] relies on repeated iterations of a single function to achieve the

desired slow computation speed.

But this projected cost to the adversary relies on an unstated

assumption: that computation of the PBKDF costs the same for the

adversary and the honest user. In the case of a border crossing, a full

copy of the information on disk could be made within minutes to

hours, and then the PBKDF can be computed on a different device

that is specialized for computation of the PBKDF. As shown in

Figure 1, brute-forcing a PBKDF on dedicated hardware provides

many orders of magnitude of faster computation, [2, 31, 44] to the

point where most FDE systems can be broken in a few hours by an

adversary using dedicated hardware, even for iteration counts that

make the login time prohibitively high for the honest user.

Newer PBKDFs utilize two techniques to thwart this computa-

tion asymmetry. First, newer cryptographic primitives like scrypt

[50], bcrypt [52], and argon2 [18] are algorithmically designed

to re-balance attacker and defender effort by leveraging features

1

available on defender machines (e.g., large RAM) and reducing the

benefit of features that are unlikely to be on defender machines (e.g.,

parallelism across several cores). Second, modern disk encryption

systems connect these crypto primitives with trusted hardware or

operating systems-level protections.

The net result of these countermeasures is the design of a com-

plicated full-stack PBKDF system that no single person can analyze,

that lacks a clear definitional goal to achieve, and that tends to

break down whenever someone penetrates its weakest link.

Need for a concrete, full-stack definition. Apple iPhones have

some of the best-engineered PBKDFs to date, combining several

standardized cryptographic primitives with a trusted hardware

element and an operating system-enforced erasure failsafe [8]. Even

with these 3 interlocking pieces, a company called Cellebrite built

a system called ‘GrayKey’ that facilitates brute-force dictionary

attacks [53]. In response, Apple’s latest operating system update

introduced new OS and hardware-level countermeasures that are

specifically designed to thwart GrayKey [5].

This type of cat-and-mouse game is precisely what cryptography

has typically avoided, thanks to rigorous security definitions that

are independent of any construction and that guarantee resilience

against a powerful attacker. Ergo, the Apple-Cellebrite story is em-

blematic of a larger issue: to date we have been treating PBKDFs as

hash function constructions that happen to have additional proper-

ties. PBKDFs are different from their two parents (password-based

hashes and KDFs), and we should consider them as a first-order

objective worth achieving on their own, with a security definition

that combines their crypto and systems security requirements.

Need for resilience. Rather than consuming one resource (com-

puting power, or in the case of scrypt [50], memory and computing

power), a PBKDF should consumemany different kinds of resources.

This mitigates attackers’ specialized hardware advantage and pro-

vides an “approximate” localization that ensures that the advantage

of attackers’ specialized hardware over the honest user’s device

is at most linear in the number of different resources consumed.

This can be thought of as paying a linear cost in return for an

exponential gain in the cost ratio of the defender to the attacker.

It should also go a step further and include resilience - 10,000
iterations of a function was much more burdensome a decade ago

before ASICs became so much cheaper due to Bitcion. Ideally, a

PBKDF would have resiliency and graceful degradation, so that as

each component of the function became obsolete, the system as a

whole would continue functioning well.

1.1 Our Contributions
This work provides a joint crypto-systems definition of a resilient

PBKDF that combines concepts from cryptography and systems

security as well as a construction, called Bog, that provably achieves
this definition. More concretely, we claim three contributions in

this work.

Defining resilient PBKDF. First, we provide a definition and set

of security guarantees for resilient password-based key derivation

functions. Our definition operates in the random oracle model, and

it captures a list of systems requirements that we also include.

Formalizing resources to assess defender optimality. Second, we
include an abstract conceptualization of resources consumed when

attempting to brute-force a password. These extend and formalize

the FDE KDF “resource-consumption” idea of Brož et. al. [22].

The generic notion of resources helps us to capture both the

guarantee that components should attempt to be as cost-optimal

and localized to the defender’s system as possible and also that the

resilient system should achieve (approximately) the best security

margins achieved by any of its underlying primitives. We demon-

strate that for a well-balanced set of defender resources, adversaries

can be restricted to a linear advantage over an honest defender’s

resources, even accounting for parallelism. This restricts the benefit

of using specialized hardware that would be orders of magnitude

faster than the honest user’s device for PBKDF2.

Bog construction. Finally, we introduce Bog, a construction and

prototype Rust implementation of a resilient PBKDF. Bog uses

Bertoni et. al.’s sponge function [16] to combine several plugins that

each take advantage of different resources available on the device.

The resource-consuming plugins together ensure that computation

is optimized and localized to the defender’s machine. Additionally,

Bog uses Fischlin et. al.’s hash combiner [38] to provide a password

with high (pseudo)entropy even if all-but-one hash functions are

later discovered to be broken, backdoored, or malicious. We prove

that Bog meets our security definition in the random oracle model.

Bog has graceful degradation. The compromise of a resource-

consuming plugin is not catastrophic; the resources consumed by

the remaining non-bypassed plugins are unaffected. The hash com-

biner ensures that we have the guarantees of our strongest hash

function, even if we’re not sure which hash function is the strongest.

When designing Bog, we approached the problem from both a

cryptography and a systems security standpoint, hoping to get the

best of both worlds.

1.2 Outline
In Section 2, we provide requirements and provide a definition for

a resilient PBKDF. In Section 3, we describe Bog, our construction
of a resilient PBKDF. In Section 4, we demonstrate that Bog meets

the definition of a resilient PBKDF. Section 5 provides a description

of our proof of concept implementation of Bog. Finally, Section 6

describes several categories of related work.

2 DEFINING A RESILIENT PBKDF
Password-based key derivation functions are used in a variety of

applications (cf. §6), yet there is little analysis of their desired prop-

erties from both the systems and the cryptography communities.

The KDF nature of the PBKDF specifies stringent output random-

ness requirements that surpass those of normal password hashing,
1

and the password-based part of the PBKDF means that some crypto

definitions are not necessarily useful. (In particular, a PBKDF is not

a pseudorandom function because it lacks a high-entropy secret

key.)

1
As a simple counterexample: one could append a 0 bit to the end of all password

hashes and no security in the password hash was lost. But appending a 0 to the end of

the hash and then treating it as a key does impact the security of things that use that

key in the future.

2

resources hashes

Resilient

PBKDF

salt

Pass

out_len

plugins

key

Figure 2: The input-output behavior of resilient PBKDFs
like Bog and RObog. Note that the user doesn’t select the
resources; they are an intrinsic part of the computing en-
vironment. Also, the device’s legitimate owner chooses the
hash functions, which then remain constant across invoca-
tions.

According to the NIST specification of PBKDFs [64], the main

purpose of the design of PBKDFs is to slow down brute-force dic-

tionary attacks on passwords. The PBKDF2 specification uses a set

number of iterations of a pseudorandom function (PRF) in order

to achieve this slowness. The PBKDF takes as input a private but

low-entropy password, a public high-entropy salt, and a key output

length. Since it is a KDF, the output must be pseudorandom and

suitable for use as a cryptographic key. This holds the output to a

higher standard than a typical password-hashing function, which

only requires the function to be slow and collision resistant.

In this section, we define requirements and security guaran-

tees for a resilient PBKDF. It incorporates all the requirements of a

PBKDF stated above (random output, resource-consuming). Novelly,

our construction also addresses differences in resources between

attackers and defenders; even an attacker with specialized hard-

ware must face a high cost for brute-forcing. We also believe that a

PBKDF should demonstrate resilience; that is, it should maintain its

full security unless all of its components are broken.

We first list our systems-level requirements, then provide a defi-

nition for resilient PBKDF that complements these requirements.

2.1 Requirements
A resilient PBKDF is one where the risk of total compromise is

spread out among several different components such that a failure

or degradation in any of these components results in a proportional

graceful degradation of the overall construct. Ergo, in addition to

requiring that the system transform a low entropy password into

a high (pseudo)entropy key, a resilient PBKDF must achieve the

following additional properties.

(1) Defender Optimality: A PBKDF must resist brute-force at-

tacks. So the defender’s device must be an optimal place

to compute the function - or at least, the defender’s device

cannot be significantly worse than the attacker’s device at

computing the function. In the ideal case, the defender’s

device is optimal for computing the function. Informally,

the best way for an attacker to brute-force the PBKDF is

to possess many copies of the defender’s device.

One way to achieve this is to combine multiple plugins,

each of which takes advantage of one defender resource,

such as memory, L2 cache, or CPU instruction agility. At

that point, any attacker who has the same combination

of resources either has the defender’s device itself, or has

something that is functionally equivalent.

(2) Resiliency: Above all, a resilient PBKDF should continue

providing security guarantees even if some of its compo-

nent parts are found to be broken, backdoored, or just not

good enough. Security should remain intact unless all com-

ponents are broken. Similarly, failure in consuming one

resource should not impact other resources consumed.

(3) Locality: Component selection can also localize the PBKDF
function by using, e.g., a Hardware Security Module [62]

will ensure that only the honest device can consume this

resource. Though it should be difficult, with enough work,

the attacker can acquire these localizing resources (say, by

stealing the user’s laptop), and so our security game in the

upcoming section understands the difference between local
and nonlocal plugins. To compute the resilient PBKDF, an

adversary must first Acquire all local resources.
(4) Crypto agility: Hashing algorithms have been broken in

the past [43, 56, 60, 61] and it is reasonable to assume that

others will be broken in the future. Additionally, new de-

signs are likely to be created to take their place. A resilient

PBKDF improves cryptographic agility for two reasons:

first, its graceful degradation provides time to swap out

a broken algorithm as long as at least one hash function

remains unbroken, and second, its pluggable architecture

provides a simple upgrade path to new constructions.

(5) Statelessness: Algorithms should not need to preserve state

between different iterations of the PBKDF. They should not

even need to preserve state once they are done with their

one component of the function, nor should they behave

differently when given different input. This includes being

timing-independent of the password itself, as identified by

[22].

(6) Isolation: Implementations of algorithms may have ex-

ploitable flaws or be actively malicious. The construct

should take steps to ensure that their failures can’t affect

the other components in the system - even if the func-

tion itself is “malicious” and will try to undo work done

by other parts. For complex functions, this may involve

containerization or isolation. For simpler ones, especially

hash functions, it may mean simply reading all 100 lines

of the hash function code to ensure that it is not doing any

external reads or writes.

In the next section, we provide a cryptographic definition that

incorporates these properties.

2.2 Definition And Security Guarantees
Definition 2.1 (resilient PBKDF). A function of the form

Fh1, ...,hm : (Pass, salt, out_len, plugins) 7→ key

is a resilient PBKDF if the following 2 game-based properties hold.

Indifferentiable: It is (q, t , ϵ)-indifferentiable from a keyed

random oracle R with the same input and output lengths

(cf. Definition 4.1). Put simply, this property states the best

3

thatA can do to learn passwords is to perform a brute-force

attack.

Resource-bounded: For all adversariesA, there exists a neg-

ligible function negl such that for all security parameters

λ ∈ N, Pr[A wins the resilient PBKDF game] < negl(λ),
where the probability is taken over the randomness of C

and A. Hence, brute-force attacks are resource-intensive.

The resilient PBKDF resource game defined below gives the ad-

versary to bypass plugins. This represents some fundamental way

through which a function is broken, such as if the attacker has

a backdoor. It does not encode different resources between the

attacker and defender

We devote the rest of this section to a thorough description of the

games that underlie Definition 2.1. Both the games begin with the

same setup phase in which the challenger constructs, and then the

adversary partially breaks, the resilient PBKDF construction. This

setup process has three phases: choosing plugins (S1), choosing

hash functions (S2), and permitting the adversary to bypass plugins

(S3).

(S1) Choose plugins.
(a) The challenger C picks plugins Pi , which are pseudo-

random function families. It picks ℓ of them from L

and (m − ℓ) of them from plugins.
(b) From each family Pi , C picks a function pi .
(c) C gives all families Pi to A.

(d) For all nonlocal plugins (Pi < L), it gives A oracle

access to the functions pi .
(S2) Choose hash functions.

(a) The adversary A picks how many hash functions n
will be run, and chooses c < n of them. It passes the

code of these hash functions to C. (The hash functions

must be stateless between calls and deterministic.)

(b) The challenger C picks the remaining hashes. It will

provide (free) oracle access to these hashes to Adver-

sary.

(S3) Adversary plugin acquisition and bypassing.A is given

the chance to Acquire and Bypass any plugins it desires.

(a) C initializes an empty set B of bypassed plugins.

(b) Many times, A can choose to Acquire a plugin i . This
grants A oracle access to pi if it didn’t have it already.
(This step is required before A can query a local plu-

gin.)

(c) Many times, A can choose to Bypass a plugin i . This
represents the adversary finding some algorithmic

weakness in pi so that they do not have to query it in

order to get the result.

The indifferentiability game completes with a test as to whether

the adversary can distinguish between an interaction with the

real password-based key derivation functionH and the real hash

functions {hi } or with a random oracle R and a simulated version

SR of the hash functions.

(I4) Game Initialization
(a) C picks a bit b at random.

(b) If b = 0, it will provide access to the real F and the

real set of {hi }s.

(c) If b = 1, it will provide access to the random oracle R

and simulators SRi that simulate the hash functions.

(I5) Query Phase.
(a) A makes up to q queries, with runtime bounded by t ,

to both the oracles it has been provided.

(I6) Guess Phase.
(a) A outputs b ′.
(b) The adversary wins if b ′ = b.

The resource game completes with a test of whether the adver-

sary can perform a dictionary attack at lower cost than a straight-

forward query of each password in the dictionary. More precisely,

A wins if she can make fewer than one oracle query per plugin

per password attempt. Later, in Section 4, we will use this mini-

mum bound on different categories of adversary resources to relate

the adversary’s resource consumption to an honest user’s resource

consumption and show that for well-chosen plugins, the sometimes-

exponential advantage granted by hardware specialization can be

reduced to a linear advantage.

Let plugins be the set of all (stateless?) pseudorandom function

families, and let L be the set of all local plugins. Local plugins are
those that can only be accessed after the adversary does an Acquire
action on them.

(R4) State Setup Phase
(a) C chooses a salt and out_len. It gives these to A.

(b) A chooses a dictionary Dict of passwords it will at-
tempt to brute-force. A also controls the size d of this

dictionary. It passes this dictionary to C.

(R5) Query Phase.
(a) C initializes a query count for each plugin: qi = 0 for

all i ∈ [m].
(b) A queries C for different pi oracles as many times as

it wishes.

(c) For each query C receives, it increments the appropri-

ate query counter qi by 1.

(R6) Guess Phase.
(a) A outputs (Dict,Keys).
(b) The adversary wins if the following two win condi-

tions are met:

(i) The keys are correct. That is, ∀i ∈ [d],
Fh1, ...,hm (Dict[i],salt, out_len,

plugins) = Keys[i]
(ii) The adversary did not spend sufficient resources;

namely A made fewer than s queries to at least

one nonbypassed plugin. Equivalently, ∃qi such
that qi < d and i < B.

2.3 Resource Cost Ratio
One possible criticism of the multi-resource approach is that it

dilutes the effectiveness of some “optimal” PBKDF. If an ideal algo-

rithm resistant to all specialized hardware were known, we would

agree that this should be used. In fact, if the PBKDF is being com-

puted on highly specialized software, then the defender is mod-

erately safe using that one plugin, at least until other hardware

catches up. However, in almost all cases, we do not know of a func-

tion that is generically resource-agnostic to being run on different

4

Adversary A Challenger C

Pick pi ← Pi for i ∈ [m],
of which ℓ are in L

{Pi }i∈[m]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

oracle access to {pi }i<L←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Pick c < n hashes

n, {hi }i∈[c]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Set AdvHashesas
the set of these is.

Pick remaining n − c
hashes {hi }i<AdvHashes

oracle access to {hi }i∈[m]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B = {}

Acquire(i)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

oracle access to pi

Bypass(i)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pi keys/description

B = B ∪ {i }

(S1)

(S2)

(S3)

r
e
p
e
a
t

Figure 3: The setup phase for both the indifferentiabil-
ity game and the resource game. The adversary selectively
compromises a subset of hash functions and resource-
consuming plugins, then attempts a dictionary attack using
fewer resources than a brute-force attack would require.

Adversary A Challenger C

Pick b
$←− {0, 1}

if b = 0:

O1 = F

O2,i = hi

if b = 1:

O1 = R

O2,i = hi if i ∈ AdvHashes
O2,i = SR otherwise

PluginQuery(i,x)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pi (x)

Oracle1Query(x)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

O1(x)

Oracle2Query(i, x)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

O2,i (x)

b′−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

A wins if b’ = b

(I4)

(I5)

(I6)

r
e
p
e
a
t

Figure 4: The indifferentiability game.

hardware. Even in the specialized hardware use case, we believe

that one should not put all of one’s proverbial cryptographic eggs

into one basket. We argue that it is worth taking a linear hit to our

advantage to buy ourselves the guarantee that attackers’ advantage

is not more than linear.

We can encode the resources a party possesses for computing

these different plugin functions in a “cost vector” that represents

how much effort it takes that party to compute the plugin once. A

lower number means that party is better at computing that plugin.

So the defender’s normal laptop computer might have a cost vector

of [1,1,1,1,1], but an adversary with specialized hardware for some

of the functions might have a cost vector of [0.000001, 0.5, 0.000001,

1, 0.000001]. So our honest user above has a total cost of 5, whereas

the specialized adversary had a cost of 1.5000003.

Adversary A Challenger C

salt, out_len
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Choose password

list Dict of length s
Dict−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∀i ∈ [m] : qi ← 0

PluginQuery(i, x)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pi (x)

qi ← qi + 1

Guess key list Keys
Keys

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Keys
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

A wins if

(1) Keys[i] = Bog(Dict[i])∀i ∈ [d]
(2) ∃qi s .t . qi < d ∧ i < B

(R4)

(R5)

(R6)

r
e
p
e
a
t

Figure 5: The resilient PBKDF security game. The adver-
sary selectively compromises a subset of hash functions and
resource-consuming plugins, then attempts a dictionary at-
tack using fewer resources than a brute-force attack would
require.

We can bound the cost ratio of the adversary to the defender.

If the defender cost (1) is better than the attacker cost in a ofm
plugins, and (2) the defender costs are “well-balanced” (similar to

each other), then:

attacker cost ≥ a

m
(defender cost)

In other words, in the worst case, when the defender only has an

advantage in one plugin, the attacker has at most a linear advantage

over them. This is a much safer option than the many-orders-of-

magnitude increase offered by specialized hardware for one plugin.

The resource vectors mentioned above also help clarify the cryp-

tographic resource game described in the previous section. An

adversary’s cost for computing localized functions that they have

not yet acquired can be represented as a prohibitively high number

in the cost vector; calling Acquire on the plugin reduces that cost

down to at or below the cost for the honest user. The Bypass action
for an adversary is meant to encode the event where an adversary

is so good at computing that function that it is effectively free; say,

because they had a backdoor into the function, or because they

learned a key or secret that was previously unknown to them.

The resource cost of computing a resilient PBKDF is the sum of

all Bypassed costs, and for a well-balanced defender, the cost ratio

between attacker and defender cost is at leas/t a/m.

3 BOG CONSTRUCTION
Bog uses a sponge function construction with two fundamental

differences. First, the message is replaced with plugins that con-

sume resources based on the output of the previous round. Second,

the inner function is replaced with a hash combiner to provide

resilience: the overall function acts as a random oracle as long as

at least one of its constituent hash functions do.

The random oracle property of the hash combiner (see section

3.3) ensures that the plugin’s input cannot be known until the

previous round has completed, thus, resource consumption must

be sequential. The alternation between the hash combiner and

resource consuming plugins repeats until sufficiently many calls

to the resource-consuming plugins have been made. A scheduler

5

determines the ordering of the plugins, using an auxiliary output

of the hash combiner.

3.1 Resource-Consuming Plugins
There are many ways that a single system could combine resources

to create a PBKDF, making any number of tradeoffs. It’s difficult

to pick a single best plugin for a resilient PBKDF, since specialized

hardware offers significant resources bonuses in computing these,

and the situation changes over time. Instead, as described by the

approximate locality requirement and encoded in the game, many

plugins should be chosen, to force an attacker to be specialized in

all of them, and at that point.

In Bog, resources can mean anything from time to cache space

to storage access to calls to a chip. Users should pick plugins that

they believe they have an advantage in. For example, a user doing

full disk encryption with Bog who wishes to defend themselves

against adversaries with dedicated hardware like ASICs would use

plugins that call a diverse set of instructions, accesses to the full

(encrypted) disk, many branching computation paths, and a lot of

memory. Most laptops are designed to call many instructions in

many different orders, and have a lot of memory and storage in

comparison to an ASIC, which is better at doing a single compu-

tation repeatedly, in a pipelined, parallel manner, without many

accesses to memory or storage. No plugin is a foolproof function

that proves that the calculation was done on the honest device, but

each plugin partially localizes the computation to the honest device,

such that the combination of plugins creates a function that is only

efficiently computable on the honest device or on a device that is

functionally equivalent to it. In the remainder of this section, we

first describe the functionality and security requirements of plugins

and then detail the different types of resources that they might

consume.

3.1.1 Objectives. The interface to the resource-consuming plu-

gins is quite simple – they just have an input (guaranteed to be

pseudorandom by the hash combiner), and an output. A “good”

plugin will be unpredictable without knowing both the input to

the plugin (from the previous hash combiner output) and without

spending a certain amount of resources. If a plugin is malicious or

broken, then the output may be completely non-random regard-

less of what the input is. However, even if a plugin is malicious

or broken, Bog as a whole still retains its security guarantees. The

only thing that is lost due to a malicious plugin is the resource con-

sumption requirement for that single plugin. Basically, the damage

a broken plugin can do is contained to that one plugin.

The main goal of a good plugin is unpredictability - the output

should be dependent on both the input and the resources spent.

The output of the plugin should be unpredictable unless the input is

known and the resources are spent. With that as the goal, different

plugins may have vastly different designs. We list some candidate

plugins in Section 3.1.2.

The plugins of Bog are meant to be highly customizable. If a

device has access to keys baked into the hardware, or a Trusted

Platform Module, or similar, then that is a very strong localization

signal that should be incorporated into Bog. But if the honest device
does not have any such resource, it should still be feasible to choose

a set of plugins such that that kind of device is the only efficient

type of device capable of computing the key. In this case, Bog’s
localization is preventing adversaries from having hardware advan-

tages over the honest device. In short, the choice of plugins should

be determined based on the desired use case and the resources

possessed by the honest device. In the next section, we describe

example resources and plugins that consume them.

3.1.2 Resources Utilized. We list here several resources that var-

ious machines might have, and we list concrete plugins that can be

chosen to consume each of them. We use existing implementations

for these plugins and simply write glue code to make them conform

to Bog’s interface.

Trusted PlatformModule. If the honest device has a TPM, it can be

used as a strong piece of evidence that the computation is occurring

on that specific device. The TPM can provide input into the key

generation process, ensuring that the key was either generated on

the honest device or the TPM was somehow broken or bypassed.

Disk storage. The (encrypted) storage on the disk itself can be

used as a way to localize the device. A Proof of Retrievability [58]

over the encrypted disk would show that the party computing the

password has access to the data on the device itself, reducing the

likelihood that the attack is being conducted from a location other

than the honest device.

Similarly, a Universal 2nd Factor (U2F) token such as a Yubikey

serves the same purpose, but it is held externally by the user logging

in rather than being internal to the device.

Network. Network resources may be appropriate tools to check

the validity of the key generation process in some settings. In

addition to validating connection to a specific network or rate-

limiting login attempts, a service such as the Pythia PRF service

[34] could be used to ensure that the device was connected to the

network as desired.

Memory. Amemory-hard function such as scrypt [6] or argon2d
[18] imposes a trade-off between memory and time: the more mem-

ory available to the calculation, the faster the computation com-

pletes. In a heavily parallel computation of Bog, such as would

be done on an ASIC, computing a memory-hard function means

that the computation either takes longer, consuming time and CPU

cycles as a resource, or must pay the additional cost of giving each

core some memory it can use to perform the computation quickly.

We note that memory-hardness does not set a hard requirement.

Memory-hardness imposes a trade-off between memory taken and

time used, it does not set a lower bound on the amount of memory

required. Still, we can consider a memory-hard function like scrypt

to force the consumption of either memory or time.

The use of one memory-hard function does not mean that the

entire Bog function is memory-hard, as different Bog instances

can use one shared chunk of memory – one instance can use the

memory while another one is computing a different plugin.

Cache. The layout and behavior of the cache can be both archi-

tecture and system specific. A function can use knowledge of the

cache present on a particular system and optimize its performance

on, say, an Intel x86 architecture with 2MB of L2 cache. By using the

cache in an architecture-specific way, we can reduce the advantage

of an ASIC over a general CPU by forcing the ASIC to either run

6

H H H H H H

Plugin Plugin Plugin Key Key

· · ·Pass
salt

out_len

· · ·

Plugin-running phase

Plugins believed to

be side-channel vul-

nerable are run last

Key output phase

Figure 6: Bog as a sponge function.

H

scheduler

sched

����

plugin pi

resource ri

plugin list plugin list excluding pi

H

choice of pi

pin

aout

pout
ain

capacity

key_evolution

init_flag

ain

key_evolution

capacity

init_flag = 0 sched

pin

aout

key_evolution

capacity

Figure 7: A round of Bog begins with the state output from the previous hash combiner. This output is split into sections of
pre-determined, constant length: the sched bits are used to determine the next plugin to run, the pin bits are used as input to
the next plugin, the aout bits are XORed with the output of the plugin (pout) to produce ain, and the capacity bits are left as-is.
In section 3.3, we introduce the key_evolution bits, which are used to evolve the keys for the hash functions used within the
hash combinerH. Passed on as input to the next iteration ofH is the concatenation of the init_flag (set to 0), ain, key_evolution,
and capacity.

much slower or to dedicate more of its transistor count to cache.

Argon2d [18] is optimized for Intel x86 caching architecture.

Instruction diversity and branching paths. An advantage of gen-

eral CPUs over ASICs is their ability to efficiently deal with branch-

ing paths in computation and their ability to deal with many dif-

ferent instructions. If the instructions actually change from a large

set based on the input data, then pipelining is much less effective

because the pipeline changes in a data-dependent way. The next in-

struction would not be known until the data were present, negating

the hardware advantage of an ASIC.

Bandwidth. Related to memory-hard functions, bandwidth-hard
functions [54] try to reduce the performance advantage for dedi-

cated hardware by increasing RAM accesses. Energy-wise, memory

accesses on ASICs are not significantly more memory-efficient than

on general CPUs.

7

Variable Purpose Length

sched Random input to sched-

uler to determine next

plugin

Short

pin Random input to plugin Medium-long

aout XORwith plugin output

pout to make ain
Medium-long

key_evolution Evolve keys in H, see

section 3.3

Medium

capacity Provide security like

the capacity bits in a

sponge function

Long

Figure 8: Intermediate state in Bog

Parallelism. Plugins utilizing parallelism should optimize to the

number of cores possessed by the honest device. A device possessing

fewer cores should take longer to correctly compute the result, and

a device with more cores should not be able to benefit from their

extra cores.

Biometrics. Biometrics are a slightly different flavor of plugin,

since they are not trying to localize the computation to the device,

but rather identify the user logging in. Nevertheless, they can serve

as an independent nature of authentication, especially on mobile

devices that often include such sensors. Additionally, it is possible

to extract unpredictable output from such biometrics [23, 59].

3.2 Sponge Construction
Objective. Bog ‘glues’ together all resource-consuming plugins

via a sponge construction originally proposed by Bertoni et al. [16].

As shown in Figure 6, the main goal of the sponge construction

is to ensure that the resources of all the plugins must be used,

sequentially, in order to compute the correct password in the end.

Instantiation. In order to do this, Bog incorporates rounds of

plugin outputs with calls to a hash combiner that is IRO as long

as at least one hash function within it is IRO. In each round, the

output of the previous hash combiner is split into parts, which are

illustrated in Figure 7 and described in Figure 8. The sched bits

are used as a random input to the scheduler, which determines

which resource-consuming plugin will be run next. The pin bits

are provided to the chosen plugin as pseudorandom input. The

aout bits are XORed with the output of the plugin, pout, and the

resulting value, ain, will be used as part of the input to the next

round of the hash combiner H. The remaining bits are used as

capacity bits, which are also passed on to the next round ofH. The

number of capacity bits determine the security parameter of the

sponge function.

Also shown in Figures 7 and 8 are the key_evolution bits. These

are used to change the keys for the hash functions in the next call

toH. We discuss this further in Section 3.3.

This model is meant to be highly customizable, meaning that the

exact bit-lengths of each of these parts is left up to the user, but we

provide test parameters used in section 5.2.

As discussed further in section 3.4, the ordering of plugins is

designed to be modified based on all the previous computation done.

This is an anti-pipelining defense, forcing the adversary’s system to

be able to run its various functions in many orders, and preventing

full utilization of the attacker’s system since they must now handle

unpredictable scheduling of plugins.

In the specifications for the scheduler, a user can specify the

number of each plugin they would like to run. This is similar to

choosing the number of rounds in PBKDF2, but this does more than

just setting the total runtime. In addition to approximating the total

runtime of Bog, specifying values for each specific plugin allows the
user to modify Bog to use resources that they believe they have an

advantage in over the adversary. In our disk encryption motivating

example, this means that a user wishing to protect their laptop with

Bog-powered full disk encryption against adversaries with ASICs

would use more plugins that utilize the disk, its memory, and its

ability to perform varying instructions in any order (compared to

an ASIC’s highly pipelined, highly parallelized model).

Note that in our construction, we are assuming that the plugins

are “costly” in some meaningful way and that the hash combiner is

relatively “cheap.” In particular, we claim that the amount of time

taken by the hash combiner is short compared to the amount of

time taken by the plugins. We present a full analysis in section 5,

the takeaway of which is that though this assumption does not

hold if too many hash functions are being used in the combiner, it

should always hold for the numbers of hash functions and plugin

runtimes that we think are reasonable.

3.3 Hash combiner
Objective. The purpose of H in Bog is to force the plugins to be

run in sequential order. As discussed in section 3.1, the output of a

good plugin will be unpredictable based on both its input and the

resources consumed. Thus, there is no point to running a plugin

before the input pin is known. And, due to the properties of the

sponge function construction, if H acts as a random oracle, then

pin cannot be known until all previous rounds have been run.

The design of a sponge function relies on this inner function

being indifferentiable from random oracle. If a single keyed hash

function is trusted enough to suit this purpose, then H could be

instantiated using a single hash function.

But there is disagreement as to which hash function should be

trusted enough to fill this role as different users may trust the design

of these hash functions to different extents. In our implementation,

we use a hash combiner that provides the desired properties of a

hash function provided that at least one of the input hash functions

satisfies the property, even if it is not known which hash function

satisfies it.

If multiple hash functions are combined incorrectly, their security

properties can actually be reduced. For example, an XOR combina-

tion of two hash functions can eliminate collision resistance, and

concatenation of the function outputs can break pseudorandomness

[21, 36] if one of the hashes is broken or malicious.

Instantiation. The construction F2 we use, created by Fischlin

et al. [38], provably preserves many properties including indiffer-

entiability from a random oracle (cf. Definition 4.1) between two

hashes as long as one of them has the IRO property.

In order to combine more than two hash functions with equal-

length outputs, we form a binary tree of F2 constructions. Once

8

H

init_flag

aout

capacity

key_evolution

F2

F2

F2

h1

h2

h3

h4

h1

h2

h3

h4

k1

k2

k3

k4

y

Figure 9: The inputs and functionality of H. The
key_evolution bits are split into equal-length parts and
passed individually into the hash functions hi . This creates
a new key ki to be used as the key the next time hi is run.
Separately, the init_flag, aout, and the capacity bits are
passed as input to the hash combiner F2, which is called
recursively in a tree structure to combine all the hash
functions in a way that if one hash function hi is IRO, then
the entire F2 construct is IRO as well.

again, the IRO guarantee composes gracefully over as many com-

positions of F2 as desired. Unfortunately, the same cannot be said

for performance: asymptotically, the output size grows exponen-

tially in the number of hash functions used (which we denote by

n). Nevertheless, this exponential growth rate is rather slow: ap-

proximately (1.1)n . So, for a reasonable constant number of hash

functions like n = 4 or n = 8, the combiner runs rather quickly. We

tested this assumption on our sample implementation with 4 hash

functions and learned that the overhead incurred byH is negligible

for a couple hundred plugins, and grows to about 25% for 1000

plugins. See Section 5 for more details.

The key_evolution bits are used to rotate the keys. As part of

H, before the inputs are sent to F2, the key_evolution bits are split

into n parts, where n is the number of hash functions. Each part

key_evolutioni is passed through the hash function hi using the

previous key, and the output is used to set the new key ki for hi .
The key evolution is conducted to prevent a malicious hash

function from learning too much about the other hash functions’

keys, which would violate the pre-condition required for H to

function as a random oracle.

3.4 Scheduler
Objective. Our scheduler provides non-predictability and resis-

tance to early confirmation.We allow the user to specify constraints

on how many of each plugin should be run, and also to mark some

of the plugins as vulnerable to side channels. The selection of a par-

ticular plugin for a round should leak no information as to whether

this is the correct password or not. Adversaries should not be able to

abort their password calculations early based on schedule choices. If

the user believes that a plugin has side channels that would enable

an early-confirmation attack, we allow that plugin to be run close

to the end, so that the majority of the computation must still occur

before the side-channel-vulnerable plugin is run.

Instantiation. We chose a simple method for our scheduler – sam-

ple randomly without replacement from the total list of plugins

you’ll run (that are not vulnerable to early confirmation). For ex-

ample, if a user specifies that they want to run one plugin 10 times,

another 5 times, and five more plugins 1 time each, then in the first

round, the scheduler will pick one of those plugins randomly from

a list of twenty, in the second round, it will pick one of the nineteen

remaining functions, and so on, until there is only one option left.

Plugins that a user believes have side channels that make them

potential avenues for early confirmation attacks are executed only

in the final rounds of Bog, also in a random order according to the

output of the hash combiner.

The scheduler’s source of randomness is a subset of the bits

returned by the hash combiner at each step. Since we are assured

that these are pseudorandom, we simply use rejection sampling,

calculating the index of the plugin mod the number of remaining

plugins, and remove the selected plugin from the list.

4 BOG ANALYSIS
In this section, we rigorously prove that our Bog construction

satisfies the definitions and requirements stated in Section 2.

First, we establish that Bog achieves a strong notion of crypto-

graphic security called indistinguishability from a random oracle, or
IRO, as long as one of its constituent hash functions is also IRO. We

prove this assertion via the composition of two separate theorems,

stated here informally.

Thm 4.2. If the inner functionH within the sponge function is

indifferentiable from a random oracle, then Bog is also IRO.

Thm 4.3. As long as at least one of the component hash functions

hi is indifferentiable from random oracle, thenH is also IRO.

We stress that the first two theorems don’t require the plugins

to provide any cryptographic security. Ergo, even if all resource

plugins are bypassed or backdoored, Bog still provides the same

IRO guarantee as previous PBKDFs.

Second, we establish that Bog’s output is unpredictable unless
an attacker expends sufficient resources. In other words, we prove

the following assertion, stated here informally.

Thm 4.5. IfH is collision resistant, then an attacker must execute

all unpredictable resource-consuming plugins in order to predict

outputs of Bog,
We observe that this theorem provides graceful degradation of

Bog against partial (but not complete) compromise in the hash

functions: unpredictability may still apply even if none of the hash

functions is IRO but at least one of them is collision resistant. How-

ever, if all hash functions are completely compromised (e.g., they

equal the identity function), then none of our security guarantees

hold.

4.1 Indifferentiability from a Random Oracle
Before we rigorously prove these cryptographic security proper-

ties about the Bog construction, we first define this target notion

9

BogH H RObog SRObog

D

Figure 10: IRO game for Bog. Given H, BogH, and RObog,
must produce SRObog such that D cannot distinguish be-
tween the left and right sides.

of ‘strength’ for a password-based key derivation: the concept of

indifferentiability from a random oracle (IRO) [46].
Intuitively, this notion states that a construction FH

“properly

leverages” its underlying random transformation H in order to

produce an object that is “as good as” a fresh random oracle, even

if H is public knowledge. Maurer et al. [46] capture this notion

formally via a simulation-based definition that we state generically

below and depict for the case of Bog in Figure 10.

Definition 4.1 (IRO [26, 46]). A construction F with oracle access

to a random transformation H is said to be (q, t , ϵ)-indifferentiable
from a random oracle R if there exists a simulator SR (with running

time at most t per invocation) such that for any distinguisher D

that makes at most q oracle queries it holds that:

| Pr[D(FH,H)] = 1 − Pr[D(R, SR)] = 1)| < ϵ .

Note that the running time of D is unbounded.

Additionally, we say that FH
is indifferentiable from a random

oracle if there exist t polynomial in its input length,q = poly(λ), and
ϵ = negl(λ) such that the above statement holds, where λ denotes

the security paramter.

We stress that the definition does not permit the simulator S to

view the queries that D makes to R, and yet S must still produce

responses that are consistent with any queries that D could have

made to R. Additionally, we remark that all random oracles consid-

ered in this work will be keyed; however, for simplicity of notation

we often omit the key parameter from the oracle’s input.

Indifferentiability has desirable composition properties. Maurer

et al. [46] showed that ifFH
is indifferentiable from a randomoracle

R of the same size, then F can replaceR in any larger cryptosystem.

In particular, this larger cryptosystem may even be another con-

struction that leverages indifferentiability! Ergo: this composition

property allows us to prove in stages that Bog is IRO.

4.2 Indifferentiability of Bog
The following theorem conveys the strength of the Bog sponge

construction when instantiated with a keyed random oracle H :

{0, 1}∗ × {0, 1}∗ → {0, 1}L .
Theorem 4.2. IfH acts as a random oracle, thenBogH is (q,q2, ϵ)-

IRO where ϵ = q(q+1)
2
c+1 .

The proof of this theorem uses similar concepts to Bertoni et al.’s

proof of indifferentiability for the sponge construction [17]. Like

h1

h2

h3

h4

h5

h6

h7

h8

F2(h1,h2)

F2(h3,h4)

F2(h5,h6)

F2(h7,h8)

F2(F2(h1,h2),
F2(h3,h4))

F2(F2(h5,h6),
F2(h7,h8))

H =

F2(F2(F2(h1,h2),
F2(h3,h4)),
F2(F2(h5,h6,),
F2(h7,h8)))

Figure 11:Hmaintains the properties of one good hash func-
tion even if all other hash functions are bad

the Bertoni et al. proof, we build a data structure for the simulator

to discover when its queries are “connected” as part of a larger

single Bog operation (i.e., that the output of one H is meant to be

transformed by a plugin and then fed into another instantiation of

H).

However, some modifications are required to the Bertoni et al. ar-

gument in order to account for the design of the plugin system. The

simulator in the sponge function construction has full control over

the rate bits fed into the next invocation ofH because it can choose

the message to absorb. By contrast, our simulator S must design

special plugins that can provide the right output, in the right order,

to control the rate bits. The simulator needs this power in order to

glean valuable information from RObog. We present a complete

proof of Theorem 4.2 in Appendix A.

4.3 Resiliency from the Hash Combiner
Next, we demonstrate a theorem that combines all of the assertions

from Section 3.3 about the relationship between the hash functions

hi , recursive applications of the Fischlin et al. hash combiner F2,
the key evolution process, andH.

Theorem 4.3. If at least one component hash function hi acts as
a random oracle, then the round constructionH is IRO.

Proof. Lemma 4.2 in Fischlin et al. [38] states that if the hash

combiner is used to combine two hash functions, one of which

acts as a keyed random oracle where the key is unknown to the
distinguisher and is chosen uniformly from the key space, then the

combiner’s output is IRO.

Even though Bog begins with a low-entropy password, we meet

the italicized condition within the initial round of Bog. In all fu-

ture rounds, the keys were evolved by running the key_evolution
bits through each of the hash functions hi , as shown in figure 9.

Assuming that one of the functions acted as a random oracle, then

its output when run on its part of key_evolution (which, recall,

was also indistinguishable from random) is indistinguishable from

random, as shown in 11. Thus, the new key for this function was

chosen in a way that was indistinguishable from random, and it is

still unknown to D. Therefore, all future rounds of Bog also meet

this condition and the round constructionH is always IRO. □

10

4.4 Consuming Resources
Unlike the other components of Bog, we do not rely upon the

resource-consuming plugins to act as a random oracle. Instead, we

view a plugin as good if its output is unpredictable to an adversary

based upon the (partial) secrecy of its resources. For example, our

plugin design is based on the principle that an adversary cannot

introspect into the secrets held by a TPM, or obtain the response to

a challenge sent to Pythia, or provide an appropriate biometric, etc.

Or more accurately: it might be possible for an adversary to do any

one of these actions, but Bog’s resilient design only requires the

premise that no attacker can compromise all of the plugin systems

simultaneously.

We begin with a formal definition of unpredictability. Note that

pseudorandom function families (as used in Definition 2.1) are

unpredictable.

Definition 4.4 (Unpredictability). A keyed family of functions P is

said to be (q, t , ϵ)-unpredictable if for every adversaryA that makes

at most q oracle queries and executes in time at most t ,

Pr[AP = (x ,y) s.t. P(x) = y and A did not query P at point x] < ϵ ,

where P : {0, 1}a → {0, 1}a is an instance of the unpredictable

function family P chosen uniformly at random.

The following theorem demonstrates that Bog opportunistically
leverages the unpredictability of all plugins that can provide this

guarantee. Whereas the sponge construction guarantees (Theorems

4.2 and 4.3) rely on the collision resistance of the capacity bits, this

theorem relies on the unpredictability of the ain, aout, and pout
wires; we let a denote their total length. Note that the following

theorem only considers a combined round constructionH that is

IRO rather than its constituent pieces; we can do so because this

guarantee composes with that of Theorem 4.3.

Theorem 4.5. Let plugins be a set of m functions, of which a
subset T ⊆ plugins are (q, t , ϵ)-unpredictable. Additionally, let A be
an adversary with running time t and with q ≥ m allowable calls to
each of several oracles: a (q, t , ϵ)-collision resistantH along with all
the plugins inT . Then, the probability thatA can produce a password-
key dictionary (Dict,Keys = [Bog(w) : w ∈ Dict]) is at most 2ϵ |T | if
there exists a plugin that A queries fewer than |Dict| times.

The proof of this theorem can be found in Appendix B. It operates

in the nonprogrammable random oracle model.

5 IMPLEMENTATION
We implemented a proof of concept for Bog in Rust; it is available

at [URL removed to preserve anonymity]. No intensive effort was

made to optimize the code.

In this section, we present experimental results that validate two

properties of our implementation. First, we demonstrate that the

hash combiner’s runtime is insignificant compared to that of the

plugins. Second, we show that Bog performs well for parameter

choices that we can reasonably expect to see in practice.

5.1 Time taken by hash combiner
We run the hash combiner a number of times equal to the number

of plugins run. One consequence of this design is that if the hash

Figure 12: Runtimes for Bog as a function of the total num-
ber of plugins executed. The sum of all plugin runtimes are
fixed at 1 second.

combiner is computationally-intensive, it runs the risk of becoming

an undesirable plugin itself. Thus, we require that the hash combiner

should not take too long compared to the plugins. The plugins are

meant to consume their resources in the desired login time (say,

one second), and the hash combiner should not add very much

time beyond that, or else hardware dedicated to the computation

of Bog will once again have a resource advantage over the honest

user.

Nothing in our theoretical model prevents the hash functions

from taking too long; this is a practical constraint. Each hash func-

tion call shouldn’t take very much time, but the hash combiner can

cause a large number of hash function calls to occur on more and

more input.

Thus, as part of our analysis, we use our implementation to

demonstrate that the hash combiner doesn’t take too long. The

results, for 4 hash functions, can be found in Figure 12. The bench-

marks were run on a 2015 MacBook Pro with a 3.1 GHz i7 core and

16 GB of RAM. For this proof of concept, we did not run actual

plugins; instead, several copies of a dummy plugin were created.

This dummy plugin simply sleeps for a certain amount of time, to

control the resource consumption for the purpose of benchmarking.

The benchmarks were run 300 times for each configuration.

For fewer than 200 functions, the overhead incurred by the hash

combiner is very low. Even for a thousand plugins, we still incur

less than 25% overhead.

5.2 Parameter Choice
The hash combiner construction we used combines two hash func-

tions at the cost of making its final output slightly more than double

its length. To combine more hash functions than two involves cre-

ating a tree-like structure, resulting in an exponential increase in

the input length. We tested our implementation using 4 and 8 hash

functions. For four hash functions, each of which outputted 64

bytes initially, the intermediate state length was 274 bytes. This

11

n sched pin ain key_evolution capacity Total state len.

4 2 B 64 B 64 B 104 B 274 B 40 B

8 2 B 128 B 128 B 256 B 466 B 128 B

Figure 13: Parameter values used in 4- and 8-hash function
implementation

was split into several parts, as discussed in section 3: 2 bytes were

used for scheduler input, 64 bytes used for the plugin input and

output, 104 for the “capacity bits” passed on to the next round, and

40 for key rotation of the hash functions within the hash combiner.

A summary of parameters used is in Figure 13.

The number of hash functions affects the length of the interme-

diate state, because the more hash functions used, the more the

hash combiner causes the output length to increase. The choice

of number of hash functions determines the maximum size of the

parameters of each portion of the state.

Much like in a sponge function, the choice of size for each compo-

nent affects the security of the scheme. The capacity bits determine

the security of the overall scheme. In our scheme, the plugin in-

put/output bits function like the rate bits of a sponge function. This

does not affect the security of the sponge function, but it does af-

fect the guarantees of our plugins. We also use some bits of the

state to schedule the next plugin and to rotate the keys of the hash

functions in the hash combiner.

6 RELATEDWORK
This work combines multiple avenues of research within applied

cryptography and systems design.

PBKDFs & trusted hardware for disk encryption. The predominant

use of the key derived from a PBKDF in practice today is as the

encryption key for data saved in long-term storage. Support for

sector-level and/or file-level disk encryption is built in natively to

all modern desktop (Windows BitLocker [33], Mac OS FileVault,

and Linux LUKS [39]) and smartphone (iOS [8] and Android [7])

operating systems. Many of these systems utilize a combination

of software and hardware-localizing components; for instance, Bit-

Locker leverages a TPM and iOS full disk encryption leverages a

trusted Secure Enclave. There also exist several third-party soft-

ware packages for full disk encryption, such as TrueCrypt [63] and

VeraCrypt [65].

Hashing and key derivation. Our top-level Bog design is both

inspired by and directly uses several innovations in the design of

(password based) hash functions. Most directly, Bog’s architecture
follows the Keccak sponge function design from Bertoni et al. [16,

17], which has since been standardized by NIST as the SHA-3 [57].

We follow the lead of Keccak and many other hash functions by

using Bellare and Rogaway’s random oracle heuristic [15].

Additionally, there is a long history of competitions [10] and

innovation in the space of password-based hashing. The first wide-

spread protocols for password-based key derivation function were

RSA Corporation’s PBKDF1 and PBKDF2 [55], the latter of which

has been standardized by NIST [64]. However, there exist attacks

that can lower the cost advantage ratio of PBKDF2 via a partial al-

gorithmic bypass [66] or by taking advantage of massively parallel

hardware platforms like GPUs or ASICs [2, 30, 44].

In response to these concerns, researchers developed new func-

tions like argon2, bcrypt, and scrypt (cf. §3.1.2) with features that are

difficult to emulate in massively-parallel systems, such as highmem-

ory consumption. These newer functions achieve higher, though

not always optimal, cost advantage ratios [31, 45, 67]. We advocate

for the use of several such systems as plugins within Bog (cf. §3.1.2).
One differentiator of Bog from prior PBKDFs is our ability to bring

concepts from multi-factor security to hash functions: our plugin

system allows the hash function to leverage who you are (e.g.,

[23, 59]), what you have (e.g., [8, 41]), and what other people on

the network can vouch for you (e.g., [24, 34]). See section 3.1 for

details.

Finally, some works have systematized PBKDF research into

lists of descriptive criteria that desirable functions should provide

[22, 25]. Our definition in §2 combines and extends several of their

cryptographic and systems security constraints.

Hash combiners. At the level of round transformations, our work

uses the theory of combiners to provide resilience against ineffec-

tive or backdoored hash functions. Initiated by Boneh and Boyen

[21] and Pietrzak [51], this field was initially dominated by negative

results that showed the difficulty of making collision-resistant hash

functions with small output size. Mittelbach [48] and others [11, 28]

extended these impossibility results to cover other desirable crypto-

graphic properties like (second) preimage resistace. The difficulty of

building cryptographic objects with small output length is a strong

motivator for our decision to use hash combiners with sponge

functions since, unlike the Merkle-Damgard paradigm [47], sponge

functions actually require large intermediate state to achieve colli-

sion resistance and they can choose an output length independent

of the intermediate state size.

Concretely, our hash function combiner draws heavily from the

work of Hoch and Shamir [42] and Fischlin et al. [36, 37], whose

constructions permit composition of several functions to achieve

either the best security guarantee of any component function or

sometimes a guarantee that is stronger than any individual con-

stituent. Additionally, we combine these techniques with ideas

from leakage resilience [32] in order to design keyed cryptosystems

whose security cannot be compromised even if malicious hash func-

tions observe some information about the secret state of good hash

functions.

Subversion resilience. Finally, throughout the design process, our

work is inspired by the recent research thrust into subversion-

resilient cryptography. These cryptosystems are designed to with-

stand algorithmic flaws such as bad (pseudo)random number gener-

ators [13, 27, 29] or maliciously chosen public parameters for public

key cryptosystems [3, 9, 12, 14, 40].

REFERENCES
[1] 2018. Asic Miner Value. (2018). https://www.asicminervalue.com/.

[2] Ayman Abbas, Rian Voss, Lars Wienbrandt, and Manfred Schimmler. 2014. An

efficient implementation of PBKDF2 with RIPEMD-160 on multiple FPGAs. In

20th IEEE International Conference on Parallel and Distributed Systems. IEEE
Computer Society, 454–461. https://doi.org/10.1109/PADSW.2014.7097841

12

https://www.asicminervalue.com/
https://doi.org/10.1109/PADSW.2014.7097841

[3] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. 2017.

A Subversion-Resistant SNARK. In ASIACRYPT 2017, Part III (LNCS), Tsuyoshi
Takagi and Thomas Peyrin (Eds.), Vol. 10626. Springer, Heidelberg, 3–33.

[4] Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna

Ingólfsdóttir, and Igor Walukiewicz (Eds.). 2008. ICALP 2008, Part II. LNCS,
Vol. 5126. Springer, Heidelberg.

[5] Oleg Afonin. 2018. iOS 11.4 to Disable USB Port after 7 Days: What It Means For

Mobile Forensics. (2018).

[6] Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro.

2017. Scrypt Is Maximally Memory-Hard. In EUROCRYPT 2017, Part II (LNCS),
Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.), Vol. 10211. Springer, Hei-

delberg, 33–62.

[7] Android Open Source Project. 2018. Encryption. (2018). https://source.android.

com/security/encryption.

[8] Apple, Inc. 2018. iOS Security Guide. Technical Report. https://www.apple.com/

business/docs/iOS_Security_Guide.pdf

[9] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. 2015. Subversion-

Resilient Signatures: Definitions, Constructions and Applications. Cryptology

ePrint Archive, Report 2015/517. (2015). http://eprint.iacr.org/2015/517.

[10] Jean-Philippe Aumasson, Tony Arcieri, Dmitry Chestnykh, Jeremi Gosney, Rus-

sell Graves, Matthew Green, Peter Gutmann, Pascal Junod, Poul-Henning Kamp,

Stefan Lucks, Samuel Neves, Colin Percival, Alexander Peslyak, Marsh Ray, Jens

Steube, Steve Thomas, Meltem Sönmez Turan, ZookoWilcox-O’Hearn, Christian

Winnerlein, and Elias Yarrkov. 2015. Password Hashing Competition. (December

2015). https://password-hashing.net/

[11] Zhenzhen Bao, Lei Wang, Jian Guo, and Dawu Gu. 2017. Functional Graph Re-

visited: Updates on (Second) Preimage Attacks on Hash Combiners. Cryptology

ePrint Archive, Report 2017/534. (2017). http://eprint.iacr.org/2017/534.

[12] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. 2016. NIZKs with an

Untrusted CRS: Security in the Face of Parameter Subversion. InASIACRYPT 2016,
Part II (LNCS), Jung Hee Cheon and Tsuyoshi Takagi (Eds.), Vol. 10032. Springer,

Heidelberg, 777–804. https://doi.org/10.1007/978-3-662-53890-6_26

[13] Mihir Bellare and Viet Tung Hoang. 2015. Resisting Randomness Subver-

sion: Fast Deterministic and Hedged Public-Key Encryption in the Standard

Model. In EUROCRYPT 2015, Part II (LNCS), Elisabeth Oswald and Marc Fis-

chlin (Eds.), Vol. 9057. Springer, Heidelberg, 627–656. https://doi.org/10.1007/

978-3-662-46803-6_21

[14] Mihir Bellare, Bertram Poettering, and Douglas Stebila. 2017. Deterring Cer-

tificate Subversion: Efficient Double-Authentication-Preventing Signatures. In

PKC 2017, Part II (LNCS), Serge Fehr (Ed.), Vol. 10175. Springer, Heidelberg,

121–151.

[15] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A

Paradigm for Designing Efficient Protocols. In ACM CCS 93, V. Ashby (Ed.). ACM
Press, 62–73.

[16] Guido Bertoni, J Daemen, Michaël Peeters, and Gilles van Assche. 2007. Sponge

functions. Ecrypt Hash Workshop. (2007).

[17] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. 2008. On

the Indifferentiability of the Sponge Construction. In EUROCRYPT 2008 (LNCS),
Nigel P. Smart (Ed.), Vol. 4965. Springer, Heidelberg, 181–197.

[18] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. 2016. Argon2: new gen-

eration of memory-hard functions for password hashing and other applications.

In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on. IEEE,
292–302.

[19] Bitcoin Wiki. 2014. https://www.emc.com/collateral/white-papers/h11302-

pkcs5v2-1-password-based-cryptography-standard-wp.pdf. (2014). https:

//en.bitcoin.it/wiki/Non-specialized_hardware_comparison.

[20] Bitcoin Wiki. 2018. Bitcoin Mining Comparison. (2018). https://en.bitcoin.it/

wiki/Mining_hardware_comparison.

[21] Dan Boneh andXavier Boyen. 2006. On the Impossibility of Efficiently Combining

Collision Resistant Hash Functions. In CRYPTO 2006 (LNCS), Cynthia Dwork
(Ed.), Vol. 4117. Springer, Heidelberg, 570–583.

[22] Milan Brož and Vashek Matyáš. 2015. Selecting a New Key Derivation FunGc-

tion for Disk Encryption. In Security and Trust Management, Sara Foresti (Ed.).
Springer International Publishing, Cham, 185–199.

[23] Ran Canetti, Benjamin Fuller, Omer Paneth, Leonid Reyzin, and Adam D. Smith.

2016. Reusable Fuzzy Extractors for Low-Entropy Distributions, See [35], 117–

146. https://doi.org/10.1007/978-3-662-49890-3_5

[24] Nishanth Chandran, Vipul Goyal, Ryan Moriarty, and Rafail Ostrovsky. 2009.

Position Based Cryptography. InCRYPTO 2009 (LNCS), Shai Halevi (Ed.), Vol. 5677.
Springer, Heidelberg, 391–407.

[25] Donghoon Chang, Arpan Jati, Sweta Mishra, and Somitra Kumar Sanadhya. 2015.

Rig: A Simple, Secure and Flexible Design for Password Hashing. Cryptology

ePrint Archive, Report 2015/009. (2015). http://eprint.iacr.org/2015/009.

[26] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.

2005. Merkle-Damgård Revisited: How to Construct a Hash Function. In

CRYPTO 2005 (LNCS), Victor Shoup (Ed.), Vol. 3621. Springer, Heidelberg, 430–

448.

[27] Jean Paul Degabriele, Kenneth G. Paterson, Jacob C. N. Schuldt, and Joanne

Woodage. 2016. Backdoors in Pseudorandom Number Generators: Possibility

and Impossibility Results. In CRYPTO 2016, Part I (LNCS), Matthew Robshaw and

Jonathan Katz (Eds.), Vol. 9814. Springer, Heidelberg, 403–432. https://doi.org/10.

1007/978-3-662-53018-4_15

[28] Itai Dinur. 2016. New Attacks on the Concatenation and XOR Hash Combiners,

See [35], 484–508. https://doi.org/10.1007/978-3-662-49890-3_19

[29] Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and Thomas

Ristenpart. 2015. A Formal Treatment of Backdoored Pseudorandom Gen-

erators. In EUROCRYPT 2015, Part I (LNCS), Elisabeth Oswald and Marc Fis-

chlin (Eds.), Vol. 9056. Springer, Heidelberg, 101–126. https://doi.org/10.1007/

978-3-662-46800-5_5

[30] Markus Dürmuth, Tim Güneysu, Markus Kasper, Christof Paar, Tolga Yalcin,

and Ralf Zimmermann. 2012. Evaluation of Standardized Password-Based Key

Derivation against Parallel Processing Platforms. In ESORICS 2012 (LNCS), Sara
Foresti, Moti Yung, and Fabio Martinelli (Eds.), Vol. 7459. Springer, Heidelberg,

716–733.

[31] Markus Dürmuth and Thorsten Kranz. 2014. On Password Guessing with GPUs

and FPGAs. In Technology and Practice of Passwords - International Conference
on Passwords (Lecture Notes in Computer Science), Vol. 9393. Springer, 19–38.
https://doi.org/10.1007/978-3-319-24192-0_2

[32] Stefan Dziembowski and Krzysztof Pietrzak. 2008. Leakage-Resilient Cryptogra-

phy. In 49th FOCS. IEEE Computer Society Press, 293–302.

[33] Shon Eizenhoefer. 2006. BitLocker Drive Encryption Hardware Enhanced

Data Protection. (2006). https://download.microsoft.com/download/5/b/9/

5b97017b-e28a-4bae-ba48-174cf47d23cd/cpa064_wh06.ppt

[34] Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, Thomas Ristenpart,

and Cornell Tech. 2015. The Pythia PRF Service.. In USENIX Security Symposium.

547–562.

[35] Marc Fischlin and Jean-Sébastien Coron (Eds.). 2016. EUROCRYPT 2016, Part I.
LNCS, Vol. 9665. Springer, Heidelberg.

[36] Marc Fischlin and Anja Lehmann. 2008. Multi-property Preserving Combiners

for Hash Functions. In TCC 2008 (LNCS), Ran Canetti (Ed.), Vol. 4948. Springer,

Heidelberg, 375–392.

[37] Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. 2008. Robust Multi-

property Combiners for Hash Functions Revisited, See [4], 655–666.

[38] Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. 2014. Robust Multi-

Property Combiners for Hash Functions. Journal of Cryptology 27, 3 (July 2014),

397–428. https://doi.org/10.1007/s00145-013-9148-7

[39] Clemens Fruhwirth. 2005. New methods in hard disk encryption. (07 2005).

http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf

[40] Georg Fuchsbauer. 2017. Subversion-zero-knowledge SNARKs. Cryptology

ePrint Archive, Report 2017/587. (2017). http://eprint.iacr.org/2017/587.

[41] Trusted Computing Group. 2007–2017. Trusted Platform Module

(TPM). (2007–2017). https://trustedcomputinggroup.org/work-groups/

trusted-platform-module/.

[42] Jonathan J. Hoch and Adi Shamir. 2008. On the Strength of the Concatenated

Hash Combiner When All the Hash Functions Are Weak, See [4], 616–630.

[43] Lars R. Knudsen, John Erik Mathiassen, Frédéric Muller, and Søren S. Thomsen.

2010. Cryptanalysis of MD2. Journal of Cryptology 23, 1 (Jan. 2010), 72–90.

[44] Xiaochao Li, Chunhui Cao, Pengtao Li, Shuli Shen, Yihui Chen, and Lin Li. 2016.

Energy-Efficient Hardware Implementation of LUKS PBKDF2 with AES on FPGA.

In 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE, 402–409. https://doi.org/10.1109/
TrustCom.2016.0090

[45] Katja Malvoni, Solar Designer, and Josip Knezovic. 2014. Are Your Passwords

Safe: Energy-Efficient Bcrypt Cracking with Low-Cost Parallel Hardware. In 8th
USENIX Workshop on Offensive Technologies. USENIX Association. https://www.

usenix.org/conference/woot14/workshop-program/presentation/malvani

[46] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. 2004. Indifferentia-

bility, Impossibility Results on Reductions, and Applications to the Random

Oracle Methodology. In TCC 2004 (LNCS), Moni Naor (Ed.), Vol. 2951. Springer,

Heidelberg, 21–39.

[47] Ralph Charles Merkle. 1979. Secrecy, authentication, and public key systems. Ph.D.
Dissertation. Stanford University.

[48] Arno Mittelbach. 2012. Hash Combiners for Second Pre-image Resistance, Target

Collision Resistance and Pre-image Resistance Have Long Output. In SCN 12
(LNCS), Ivan Visconti and Roberto De Prisco (Eds.), Vol. 7485. Springer, Heidel-

berg, 522–539.

[49] Moni Naor (Ed.). 2007. EUROCRYPT 2007. LNCS, Vol. 4515. Springer, Heidelberg.
[50] Colin Percival. 2009. Stronger key derivation via sequential memory-hard func-

tions. Self-published (2009), 1–16.

[51] Krzysztof Pietrzak. 2007. Non-trivial Black-Box Combiners for Collision-

Resistant Hash-Functions Don’t Exist, See [49], 23–33.

[52] Niels Provos and David Mazieres. 1999. Bcrypt algorithm. USENIX.

[53] Thomas Reed. 2018. GrayKey iPhone unlocker poses serious security concerns.

(2018).

13

https://source.android.com/security/encryption
https://source.android.com/security/encryption
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
http://eprint.iacr.org/2015/517
https://password-hashing.net/
http://eprint.iacr.org/2017/534
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/978-3-662-46803-6_21
https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison
https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://doi.org/10.1007/978-3-662-49890-3_5
http://eprint.iacr.org/2015/009
https://doi.org/10.1007/978-3-662-53018-4_15
https://doi.org/10.1007/978-3-662-53018-4_15
https://doi.org/10.1007/978-3-662-49890-3_19
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-319-24192-0_2
https://download.microsoft.com/download/5/b/9/5b97017b-e28a-4bae-ba48-174cf47d23cd/cpa064_wh06.ppt
https://download.microsoft.com/download/5/b/9/5b97017b-e28a-4bae-ba48-174cf47d23cd/cpa064_wh06.ppt
https://doi.org/10.1007/s00145-013-9148-7
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
http://eprint.iacr.org/2017/587
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://doi.org/10.1109/TrustCom.2016.0090
https://doi.org/10.1109/TrustCom.2016.0090
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani

[54] Ling Ren and Srinivas Devadas. 2017. Bandwidth Hard Functions for ASIC

Resistance. Cryptology ePrint Archive, Report 2017/225. (2017). http://eprint.

iacr.org/2017/225.

[55] RSA Laboratories. 2012. https://www.emc.com/collateral/white-

papers/h11302-pkcs5v2-1-password-based-cryptography-standard-

wp.pdf. (2012). https://www.emc.com/collateral/white-papers/

h11302-pkcs5v2-1-password-based-cryptography-standard-wp.pdf.

[56] Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro. 2007. New Message

Difference for MD4. In FSE 2007 (LNCS), Alex Biryukov (Ed.), Vol. 4593. Springer,
Heidelberg, 329–348.

[57] SHA3 2015. Secure Hash Standard. National Institute of Standards and Technol-

ogy, NIST FIPS PUB 180-4, U.S. Department of Commerce. (Aug. 2015).

[58] Hovav Shacham and Brent Waters. 2008. Compact proofs of retrievability.. In

Asiacrypt, Vol. 5350. Springer, 90–107.
[59] Sailesh Simhadri, James Steel, and Benjamin Fuller. 2017. Reusable Authentication

from the Iris. Cryptology ePrint Archive, Report 2017/1177. (2017). https:

//eprint.iacr.org/2017/1177.

[60] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.

2017. The first collision for full SHA-1. Cryptology ePrint Archive, Report

2017/190. (2017). http://eprint.iacr.org/2017/190.

[61] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. 2007. Chosen-Prefix

Collisions for MD5 and Colliding X.509 Certificates for Different Identities, See

[49], 1–22.

[62] Laurent Sustek. 2011. Hardware securitymodule. In Encyclopedia of Cryptography
and Security. Springer, 535–538.

[63] TrueCrypt Foundation. 2014. TrueCrypt. (2014). http://truecrypt.sourceforge.net.

[64] Meltem Sönmez Turan, Elaine B. Barker, William E. Burr, and Lidong Chen. 2010.

SP 800-132. Recommendation for Password-Based Key Derivation: Part 1: Storage
Applications. Technical Report. Gaithersburg, MD, United States.

[65] VeraCrypt. 2018. VeraCrypt. (2018). https://www.veracrypt.fr/en/Home.html.

[66] Andrea Visconti, Simone Bossi, Hany Ragab, and Alexandro Calò. 2015. On the

Weaknesses of PBKDF2. In CANS 15 (LNCS), Michael Reiter and David Naccache

(Eds.). Springer, Heidelberg, 119–126. https://doi.org/10.1007/978-3-319-26823-1_

9

[67] Friedrich Wiemer and Ralf Zimmermann. 2014. High-speed implementation of

bcrypt password search using special-purpose hardware. In 2014 International
Conference on ReConFigurable Computing and FPGAs. IEEE, 1–6. https://doi.org/
10.1109/ReConFig.2014.7032529

A PROOF OF THEOREM 4.2
In this appendix, we demonstrate that Bog is IRO if at least one of its

consistuent hash functions is IRO. We first describe the operation

of a simulator S and then we argue that this simulator demonstrates

indifferentiability from a random oracle (IRO).

A.1 Simulator design
The simulator S stores its state within a few data structures. First,

S stores a table from all input queries xi to their corresponding

outputs yi . Second, S stores a forest T (i.e., a set of disjoint trees); it

is initialized to be empty and its purpose is to track how different

instances ofH are related as subroutines within a single invocation

of Bog. Third, S stores a set C containing the capacity portion of

every output yi ; it is an invariant of the construction of S that they

will all be unique, so a set is an appropriate data structure.

When a new query x is made, S extracts the init_flag and ca-
pacity from x . Then, S executes exactly one of the following three

algorithms to prepare its response and update its internal data

structures.

Consistent response: Use if x is identical to a prior query xi . In this

case, S simply returns yi .

Tree instantiation: Use if init_flag = 1. In this case, S desires to

emulate an execution ofH(x) at the initial step of a new instance

of Bog. S does the following:

• Parse x as (1,Pass, salt, out_len, plugins).
• Set plugins equal to the empty list [].

• Execute a 0-plugin instance of RObog. Parse the first block
of the response key as (sched, pin, aout).

• Sample capacity′ uniformly among strings not in C, and
then add capacity′ to C.

• Set y ≜ (sched, pin, aout, capacity′).
• Create a new tree Tx in the forest whose root (and only)

node contains the mapping x 7→ y.
• Return the response y.

Tree extension: Use if init_flag = 0 and capacity equals the capac-

ity bits within some previous output y∗. In this case, S desires to

emulate an execution ofH(x) within the middle of an instance of

Bog.

• Fetch the tree Tx ∗ whose node(s) contain capacity.
• Retrieve all nodes on the path from root x∗ to the node

containing y∗. We denote this list as x1 7→ y1, x2 7→ y2,
. . ., xm 7→ ym , where x∗ = x1 and y∗ = ym .

• Compute the differentials ∆j = ajout ⊕ aj+1in for all j ∈ [m],
where ajout is contained in y

j
and aj+1in is contained in x j+1.

For completeness, here we set xm+1 equal to the current

input x .
• For all j ∈ [m], create the constant plugin pj that outputs

∆j independent of its input pin and r .
• Create the list plugins by inserting the pj functions so that

they execute in order. That is: for every j, read the sched
bits of y j and insert pj in the location that Bog’s scheduler
would choose when given sched.
• Parse x∗ as (1,Pass, salt, out_len, plugins)
• ExecuteRObog on input (Pass, salt, out_len, plugins). Parse

the first block of the response key as (sched, pin, aout).
• Sample capacity′ uniformly among strings not in C, and

then add capacity′ to C.
• Set y ≜ (sched, pin, aout, capacity′).
• From the node xm 7→ ym within the tree Tx ∗ , add a new

child node x 7→ y.
• Return the response y.

Random response: Use if init_flag = 0 and capacity is not contained

in any node of any tree of T. In this case, S interprets this invocation

ofH as independent of any calls that relate to Bog.

• Sample (sched, pin, aout) uniformly at random.

• Sample capacity′ < C uniformly at random.

• Add capacity′ to C.
• Return y = (sched, pin, aout, capacity′).

A.2 IRO Analysis
In this section, we present a series of lemmas that collectively

demonstrate the performance and security properties necessary to

prove Theorem 4.2. We begin with a counting argument about S’s

performance.

Lemma A.1. S makes at most q oracle queries to RObog, and S

runs in time O(q2).

Proof. For each query processed, S makes exactly 1 oracle call

to RObog in the “tree instantiation” and “tree extension” cases and

0 calls in the other two cases. Furthermore, the most local work

performed within S occurs in the tree extension case, in which S

14

http://eprint.iacr.org/2017/225
http://eprint.iacr.org/2017/225
https://www.emc.com/collateral/white-papers/h11302-pkcs5v2-1-password-based-cryptography-standard-wp.pdf
https://www.emc.com/collateral/white-papers/h11302-pkcs5v2-1-password-based-cryptography-standard-wp.pdf
https://eprint.iacr.org/2017/1177
https://eprint.iacr.org/2017/1177
http://eprint.iacr.org/2017/190
http://truecrypt.sourceforge.net
https://www.veracrypt.fr/en/Home.html
https://doi.org/10.1007/978-3-319-26823-1_9
https://doi.org/10.1007/978-3-319-26823-1_9
https://doi.org/10.1109/ReConFig.2014.7032529
https://doi.org/10.1109/ReConFig.2014.7032529

does work proportional to the depth of some tree Tx∗. This depth
is at most q. □

Next, we consider the likelihood that the distinguisherD’s queries

to theH or S oracle always return outputs with distinct capacity
values. Let’s call this property capacity-uniqueness.

Lemma A.2. If q ≤ 2
c , then S is capacity-unique. Also, H is

capacity-unique with probability at least 1 − q2

2·2c .

Proof. We can validate that distinct inputs to S always return

outputs with distinct capacity by inspecting the S construction. The

“consistent response” case is inconsequential to the statement and

all other cases sample the output capacity among strings not in C.
Furthermore, each invocation of S adds at most one element to C.
It follows that as long as q ≤ 2

c
, then C remains non-saturated and

thus the sampling procedure succeeds. Additionally, H is a truly

random function and thus the claim about its capacity-uniqueness

is simply a restatement of the birthday bound. □

In the preceding proof, we denoted the capacity setC as saturated
if |C| = 2

c
, or in other words if the responses toD span all possible

values of the capacity bits. This terminology will prove useful later

in the proof.

From the lemma, it follows that in the “tree extension” routine

with S that the “previous output y∗” containing the same capacity
as the input query must be unique. Ergo, the choice of the “tree

whose node(s) contain capacity” in the first step of the algorithm is

also unique.

The next lemma provides even greater precision on the nodes

that can share capacity.

Lemma A.3. Consider any node v : x† 7→ y† within S’s forest,
and let capacity† denote the capacity portion of y†. For every node
v ′ : x ′ 7→ y′, it is the case that the capacity bits of x ′ equal capacity†

if and only if node v ′ is a child of the node v .

Proof. For the ‘if’ direction: ifv ′ is a child of nodev then it must

have been produced by the tree instantiation algorithm applied to

x ′, since that is the only algorithm that appends leaves to trees. By

construction, this node would only be added if x ′ and y† have the
same capacity.

For the ‘only if’ direction: if the capacity bits ofx ′ equal capacity†,
then S would follow the tree instantiation algorithm, and not any

of the other three algorithms, when computing S(x ′). □

With these lemmas, we can prove our main statement about the

correctness of S.

Lemma A.4. The relationship betweenD’s queries to S and RObog
is consistentwith the expected behavior of the bog construction, unless
S saturates all possible choices of capacity bits.

Proof. The real Bog construction daisy-chains together invoca-

tions of H where the output of one invocation and the input of the

next invocation have the same capacity, beginning with an input

of a special format (1,Pass, salt, out_len, plugins).
Ergo, Lemma A.3 implies that the only way that the distinguisher

D can check sponge-consistency is to run RObog on an input that

was also fed into S’s tree instantiation routine (i.e., the root x of

some tree Tx). Furthermore, D can only check sponge-consistency

for rooted paths within Tx .

If D runs the real Bog on an empty list of plugins, then Bog
construction simply runs one invocation of its round transformation

H, outputs its rate bits, and halts. Analogously, in our construction,

S’s tree instantiation step queries RObog for the rate bits and thus

provides a consistent response.

If D runs the real Bog on a non-empty list of plugins, then Bog
iteratively invokes H where the outputs of one invocation and the

inputs of the next invocation have the same capacity and satisfy

the relation ajout ⊕ pjout = aj+1in . Analogously, the tree extension

step of S designs plugins that ensure the same relation between one

round’s outputs and the next round’s inputs. Note that the actual

plugins used by S are quite different than those used within the real

Bog, but this is acceptable since the accuracy of the construction

depends only on the output of each plugin, not how it uses its

resources to compute pout.
Finally, the tree instantiation, tree extension, and random re-

sponse algorithms above all assume that C is not full, and thus they

will fail if so. S requires the capacity-uniqueness property to ensure

that the outputs of the “random response” method never need to

be consistent with any invocation of RObog. □

To complete the proof of Theorem 4.2, all that remains is to

bound the probability of C being saturated (i.e., |C| = 2
c
).

Lemma A.5. The probability that the simulator S saturates in
response to a sequence of q ≪ 2

c queries is at most ϵ = q(q+1)
2
c+1 .

The proof of this final lemma follows an identical variational

distance argument as the one Bertoni et al. use in [17, Lemma

4]. We omit a presentation of the argument here as it is purely

combinatorial in nature and does not provide any new intuition

about Bog.

B PROOF OF THEOREM 4.5
In this section, we prove Theorem 4.5 that demonstrates the unpre-

dictability of Bog’s output.
Let A be an attacker as defined above. We design a new attacker

B (with access to the same oracles) that can attack either the colli-

sion resistance ofH or the unpredictability of a plugin.

B acts as A’s challenger. After the setup process is complete,

B inserts her challenge unpredictable function into the location

of one of A’s m non-bypassed plugins pi∗ . Then, B responds to

A’s query requests honestly, recording (but not altering!) all inputs

and outputs in the process. Furthermore, B aborts if A queries the

challenge plugin pi∗ at least |Dict| times or if A finds a collision in

H.

By assumption,B completes the indifferentiability game without

aborting with probability at least 1/m − ϵ . In this case, A provides

B with a password-key dictionary (Dict,Keys).
We make the following claim: if A succeeds in the IRO game,

thenB has the ability to predict (with probability 1) an input-output

pair to pi∗ without ever having queried for it. In the remainder of

the proof, we show the value of this claim and then we prove it.

First, the claim implies that B’s probability of success is pre-

cisely AdvA/|Dict|. This probability is upper-bounded by ϵ by the

definition of unpredictability, from which the claim follows.

15

Second, we prove the claim that if A’s dictionary (Dict,Keys)
is correct then B can predict an input-output pair (x∗,y∗) such
that pi∗ (x∗) = y∗ without ever having explicitly queried for it. B

essentially follows a ‘meet in the middle’ algorithm:

• For all elementsw ∈ Dict, B calculates Bog in the forward

direction, stopping just before the challenge plugin pi∗ .
We emphasize that B need not make any oracle queries

to calculate Bog; instead B simply reviews her already-

recorded answers toH and the plugins p1, . . . ,pi∗−1 when
making these calculations, choosing any outputs uniformly

at random if they weren’t queried before. Let X denote the

list of all such intermediate state.

• For all keys z ∈ Keys, B calculates Bog in the right-to-
left direction from the output stage until just after pi∗ .
Even though B lacks access to inverse oracles (and indeed

an inverse to H or the plugins need not even exist), B

can proceed in the right-to-left direction precisely because

she doesn’t need to make oracle invocations and instead

can simply check the already-recorded answers from A’s

queries. That is: B finds the preimage of z inH, and then

the preimage of that value in pm , and so on. Let Y denote

the list of all such intermediate state.

If A’s response is correct, then pi∗ maps each element in the list

X to the list Y in order; that is, map(pi∗ ,X) = Y . Furthermore, we

asserted above that A made fewer than |Dict| = |X | queries and
that all queries have distinct responses, so there must exist some

x j ∈ X that A (and thus also B) never queried. Finally, B outputs

the input-output tuple (x j ,yj) as her prediction.

16

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Outline

	2 Defining a Resilient PBKDF
	2.1 Requirements
	2.2 Definition And Security Guarantees
	2.3 Resource Cost Ratio

	3 Bog Construction
	3.1 Resource-Consuming Plugins
	3.2 Sponge Construction
	3.3 Hash combiner
	3.4 Scheduler

	4 Bog Analysis
	4.1 Indifferentiability from a Random Oracle
	4.2 Indifferentiability of Bog
	4.3 Resiliency from the Hash Combiner
	4.4 Consuming Resources

	5 Implementation
	5.1 Time taken by hash combiner
	5.2 Parameter Choice

	6 Related Work
	References
	A Proof of Theorem 4.2
	A.1 Simulator design
	A.2 IRO Analysis

	B Proof of Theorem 4.5

